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I. INTRODUCTION

The use of cross-correlation for detecting and tracking the source of
W signals received at spatially separated receiving sites has received consider-
X able attention in the research community during recent years. It is necessary
to understand the statistical nature of ambiguity surfaces and the interdepen-
dence of the cells in the surface under realistic operational conditions in
‘ order to accurately evaluate the tracking accuracies and the detection per-
'5 formance achievable with cross-correlation. The limited understanding of the
statistical nature of ambiguity surfaces is based on the statistics of a
single cell in the absence of signal and noise power fluctuations and for
equal signal and processing bandwidths (herein called matched containment,
EJ refs. 1-3). The effects of power level fluctuations and signal overcontain-
ment, where the processing bandwidth is larger than the signal bandwidth, must
be quantified in order to fully understand the statistical nature of ambiguity

? surfaces under realistic operational conditions. The effects of signal over-
. containment have been quantified in the absence of fluctuations (refs. 4-5).
It is well known that signal noise power levels do fluctuate during
§ reasonable observation intervals (refs. 6-11). Signal and noise power level
8 fluctuations and the rate at which power levels fluctuate can adversely affect
the signal-to-noise ratios required to attain a desired performance (ref.
6). The effects of fluctuations on ambiguity surface statistics are
T unknown. The study results presented in this report address the effects of
:5 signal and noise power fluctuations on detection performance.
An ambiguity surface is a two-dimensional function, yz(r,rn), which is ::ﬁ
the sample magnitude-squared of the normalized cross-correlation between the f:%
;3 observations received at two spatially separated sites as a function of the *i?
A

relative time delay (7) and relative Doppler shift (fy) between the observa-
tions. The surface is generated for a specific integration time (T) and pro-
2 cessing bandwidth (2Wp) as shown in Figure 1-1. In actual practice, the .
; processing bandwidth is always larger than or equal to the signal bandwidth.
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Since the ambiguity surface is usually computed digitally, the ambiguity sur-
face is quantized into cells of width At seconds in the delay dimension and
Afp Hz in the Doppler shift dimension, where AT < 1/2Wp and Afp < 1/T. The
actual structure and statistics are affected by power level fluctuations and

processing parameters. The accuracy with which the time delay and Doppler
shift can be estimated and the ability to detect a signal is in turn affected
by the statistics and structure of the surface.

There are many types of fluctuation conditions which depend on the rate
at which the fluctuation processes can vary. The types of fluctuations are
bounded by very slow fluctuation conditions and very rapid fluctuation condi-

Sl PR
i 4
I

tions. Very slow fluctuation conditions occur when the signal and noise

4
A
S

powers are unknown but remain constant throughout the observation interval.

On the other hand, very rapid fluctuation conditions occur when the power
fluctuations from sample to sample are so large that successive samples may be
considered independent. Then there is the whole range of fluctuation condi-
tions between the above two extremes. The signal model used to study the
effects of fluctuation is presented in Chapter 2. The detection performance
is described in Chapters 3 and 4 for slow and rapid fluctuations, respec-
tively. The results are summarized in Chapter 5.
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2. SIGNAL MODEL

The signal model used to analyze the effects of power‘}luctuations on the
sample magnitude-squared correlation coefficient (MSCC) is described. The
model is used to analyze the effects of slow and rapid power fluctuations.

The fluctuation model is discussed in Section 2.1. The probability law

governing fluctuations and the resulting statistics are developed in Sec-
tion 2.2.

2.1 Fluctuation Model

There are many types of fluctuation conditions which depend on the rate
at which the fluctuation processes can vary. The types of fluctuations are
bounded by very slow fluctuation conditions and very rapid fluctuation condi-
tions., Very slow fluctuation conditions occur when the signal and noise
powers are unknown but remain constant throughout the observation interval.

On the other hand, very rapid fluctuation conditions occur when the power
fluctuations from sample to sample are so large that successive samples may be
considered independent. Then there is the whole range of fluctuation condi-
tions between the above two extremes. The procedures used to analyze the
effects of fluctuations will depend on the type of fluctuation condition.

The fluctuation model is a generalization of the zero mean complex
Gaussian signal model that is used to analyze the statistics of the sample
MSCC (refs. 1-5). The effects of fluctuations can be included by modeling

signals as a compared process (refs. 6, 7). In this case, signals are mod:led
as

s(t) = vp(t) x(t) (2.1)
vhere x(t) is a zero mean, unit-variance, complex, stationary Gaussian process

independent of p(t); p(t) is a non-negative random process called the power
process. Slow fluctuation conditions exist when the correlation time of p(t)
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is much larger than the correlation time of x(t), while rapid fluctuation
conditions exist when the correlation time of p(t) is much smaller than the
correlation time of x(t). Nonfluctuation conditions exist when p(t) is a
known constant in which case s(t) is a Gaussian process with variance p.

Let Z(%) be a two-dimensional zero mean complex random column vector with
elements z1(l) and z5(L) representing samples from channels 1 and 2 at time
LTS for % = 1,2,...,Np. Tg is the sampling interval, and T = NyTg is the
observation interval. The cross-covariance matrix of Z(2) is defined as:

R (2,k) = E{z(2) z' (0} (2.2)

where E{°} denotes statistical expectation and ' is the complex conjugate of
the transpose. Let Z(L) contain spatially uncorrelated noise under the H,
hypothesis and contain correlated signal plus spatially uncorrelated noise
under the H, hypothesis. Then

/N(R) Y(LR) , Hy
(L) = (2.3)
/S(E) x(L) + /N(R) Y(R) , H

where S(L) and N(R) are the independent two-dimensional power vectors for
signal and noise, respectively: X(£) is a two-dimensional, unit-variance,
zero-mean, complex Gaussian random vector with pseJas the correlation coeffi-

cient between x4(%) and x,(%); and Y(%) is a two-dimensional unit-variance, ;ﬁ
zero-mean, complex Gaussian random vector with independent components. i&i
The sample @SCC can be computed from the sample auto-correlation 23

matrix. The two-dimensional positive definite Hermetian sample auto-
correlation matrix is -

. “

A = -"'—g:z(z) NO TR (2.4)
T R=1 e

AT I N, SR R R N At R .
LY AR N (A R I P Lot
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Let

31 22
A = . (2.5)
at a

The sample MSCC is the sample magnitude-squared cross-correlation coefficient
between z,(2) and z,(%) and is given by

I
P s —12 . - (2.6)

1322

The PDF of /° can be derived from the PDF of A by (1) performing the change of
variables indicated in Eq. (2.6) and (2) integrating out the auxiliary varia-
bles a;qs 832, and the phase angle of aqp.

The cross-covariance matrix of Z(%) is sample independent when the power
processes are stationary. In this case,

‘ RR ’ Ho
Rz(l,k) = l (2.7)

R S+RN , H

where Rg and Ry are the cross-covariance matrices of the signal and noise
vectors, respectively. Combining Eqs. (2.2) and (2.7), we have

i1 0
R“ = _ (2.8a)
o W,
and
s, EW/S (D)5, (81 }p 3%
Rs = (2.8b)
s{/s1(f)sz(l)}ose'39’ 5,
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where

_ §1.|
. E(s®)} = S = | _ (2.8¢)
& L Sz .
n N
R E{N(z)} = N = - . (2.8d)
| ¥, |

Y
R

Therefore, according to Eqs. (2.7) and (2.8),
. )

N1 0
:::, RO = RN = 0 N (2.9a)
.J 2
~ R1 = Rs + R“
- — jos
S, + N E{/S1(I)SZ(I)}Dse
- = — (2.9b)
~ /S (s (1)) 9 S, +N
_E{ 5,(2)s,(%)}p e 2 2
" , Ve,
P PPy Pre

*) = o (2.9¢)
3 /=< 3 -
- P1P2 DTe P2

where ;k is the average power in channek k, Pp is the true correlation coeffi-
i: cient between the channels, and 6 is the phase of the true correlation between
> the channels. The true MSCC is defined as:
-
E(/S (DS (D)}
.1. O: - _1 - 2__ - (2.10)
;: (81+N1)(82+N2)
~3
N

7
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In the absence of fluctuation, gk = Sy, ﬁk = Ny, and

2
2 . SNR, SNR, 0
T - (snn1+1)(suna+17 *

If S4(%) and S,(%) are independent,

s{v’s1(I)sz(I)} = E{/s1(f)} E{/sz(l)}

and

(5,51 (5,2 &

(5,48, (5,4,

2 -

2.2 Fluctuation Statistics

(2.11)

(2.12)

(2.13)

The two-dimensional power vectors, S(&) and N(L), for signal and noise

are modeled as two-dimensional Gamma random vectors.

This appears to be a

reasonable statistical model because it is a generalization of the distribu-

tion of the observed single-site fluctuation processes (refs. 6-11).

It will

be assumed that the power processes in channel 1 is independent of the power

process in channel 2 for both signal and noise.

The PDF of the signal power process in channel k is

S 6 e /5)

MS
- K
(skmsk) I(ms, )

£7(s,) =
k 0

(2.13)
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where Msk is the signal degrees of freedom in channel k and §k is the mean
signal power in channel k. Similarly,

-

= K™
< (Nk] "(mk"k/ "k)
MN » N 20
g () “rom)
B f(N) = (2.14)
| ‘ ‘ 0 ’ Nk <0
R
where MNk is the noise degrees of freedom in channel k and Nk is the mean
h noise power in channel k. According to Eq. (A.3) of Appendix A, the mean sig-
83
nal power and variance of the signal power is
N Hsk = Sk
3 (2.15)
8 agk - (§k)2msk
;ﬁ and for the noise, we have
o ", * M
; (2.16)
- 2 w2

Therefore, the mean powers are unbiased and the variances vanish with increas-
o~ ing degrees of freedom.

!! Finally, the true MSCC is biased in fluctuation conditions. A larger SNR
’ is needed under {}uctuation conditions to achieve the same pf as for no fluc-
:} tuations. Substitute Egs. (2.13), (2.14), and (A.2) into Eq. (2.10). Then,
- 2

o T(MS., + 1/2) T(MS, + 1/2) SNR_SNR

S pz = 1 2 1772 pz (2.17)
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! where SNR, = gk/ik‘ By comparing Eqs. (2.11) and (2.17), the bias factor is

—~
o

BIAS = (2.18)

.
Calal

T(MS, + 1/2) T(MS, + 1/2)]2
/WSS, T(MS,) T(MS,)

Eq. (2.18) is plotted in Figure 2.1 for MS; = MS, = MS. It is compared to p%
for no bias. It can be seen that the BIAS can require significant increases .
in SNR. : b
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¢ WwB e Wo FaWaNa™eelda . ..

3. SLOW FLOCTUATION

Slow fluctuation occurs when the correlation times of the signal and

A noise power processes are much larger than the observation interval. In this K
A case, the power processes becomes an unknown constant but unknown. Therefore,

the slow fluctuation case becomes the case of constant but unknown signal and
! noise power levels. The cumulative distribution function (CDF) of the sample )
a1 magnitude-squared correlation coefficient (MSCC) is derived in Section 3.1.
:::; The detection performance of the sample MSCC is presented in Section 3.2. The

results are summarized, and the implications discussed in Section 3.3.

A

3.1 Cumulative Distribution Function

A AR

The cumulative distribution function (CDF) of the sample MSCC for known

{1 SWR's 1s
; 2 2 2 2.5 :
X FPy101002:05sNy) = 0y(1-py0p05) © ',
e N -2
7 - (1-02)L P (N.,0-1;31; 2, (3.1)
Z;, =Pl 2R N X5 1504P50 .
LY l:

AAA

vhere p% is the threshold, Pg 18 the correlation coefficient of the signal
components, Ny is the degrees of freedom, 21"1(',';';-) is the hypergeometric

function, and .
.21 SNR, 1
~ P * mk—ﬁ (3.2) ;
%) is the ratio of the SNR in channel k (ref. 1). For slow fluctuations, the ;
SNR's are unknown constants. Therefore, the CDF of the sample MSCC for slow ¥
P fluctuations becomes b
’ !
3}‘: 2, 2 ! 2 2
Pl |02, N,) = {f F(pg|0,10,:05,N0)£(0,,0,) dp.dp, (3.3)
4
o
5 vhere f(p;,p2) is the joint probability density function (PDF) of the Pc'S.
]

'd 12
|




It is reasonable to assume that Py and 0, are independent because the
i acoustic propagation conditions to the two receivers are different. There-
fore, according to the fluctuation model discussed in Chapter 2,

-1 -1
I‘(HSk + HNk) MSk p:sk (1-9\‘)MNk
' — _ (q) — y 0> P < 1
Tws) T % NS, +MN,_ 2P <
(o) ' (1+(uk-1)pk)
. f z
S % 0 . y otherwise
Py
(3.4a)
1 where
MS, N,
7 q = — % (3.4b)
x MN, S,
g nsk is the signal fluctuation degrees of freedom in channel k, HNk is the
) noise fluctuation degrees of freedom in channel k, S, is the mean signal power
in channel k, and Ny, is the mean noise power in channel k. The CDF of the
‘?‘ sample MSCC is obtainable by substituting Eq. (3.4) into Eq. (3.3) and evalu-
ating the integral.
T
A
Eq. (3.1) becomes, upon expanding the hypergeometric function,
d 2p
N-2 o (N.) _(R+1) p
F(p2| 2N = 22(1.2)“2 ki pst( ) 5
::‘ pt 919921080 T - pt -pt ( !)2 p|p1192 ;.:_:
“ 2=0 p=0 P (3.5a) "3
! where (x), = I'(nen)/I'(x) is Pochammer's symbol,
- 4
5! ' N P 2, 3
; - - ’
:‘; t(p|p1,p2) z (91"2) (1 p.lpzps) (3.5b) 2
o Define -
o tp) = {f t(plo)1.9.‘,)f(p1)f‘(pa)cm,dn2 . (3.6) :133
™ "
s P
- =
) -
"a 13
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Now

1
o/ t(p|p1.92)1’(91)«:191

t(p|p,)

1 MS +p=1 5 Ny MN, -1
I‘(lB +MN_) Ms1pp Py (1-91929 ) (1-91)
A (1 - (1-a))0,)

1 (N)(HS) 2qp+q
Eusmnzp qi’s P2 *°

F‘(MS1+HN1, HS1+p+q; MS, +MN, +p+q; 1-0.1) (3.7)

according to Eq. (3.211) and Eq. (9.180.1) of reference 12.

1
e =/ tiplo,)t(0,)d,
(]

Ny 2q

T(MS,eMN,)  MS, M3, Z\(-N») (MS.) o

. " _Tq 1'p«q’s
NCI a "2 (S oM ) Jal

q=0

2!'1(}181%1, HS1+p+q; HS1+HN1+p+q; 1-(11) .
H82+p+q-1 MN_ -1

2
MS_ +MN

de

(1 - (1-a,) p,) 272 (cont.)




N,
2q
_ a:s 0'zusz ('“r)g("sﬁgﬂ(m) Py i
q=O(Ms1+mm1) (MS mz)p*qql

?1(HS1+HN1, HS1+p+q; HS1+HN1+p+q; 1
F1(H82+HN , HS2+p+q; H82+m2+p+q
according to Eq. (3.197.3) of reference 12,

Under the Hy hypothesis, the CDF of the sample MSCC is

2 2
P2y, = F(oZ|o2, N,)

(1-95)k .

ZZ Ny (0at) MS ) “‘Sz)m PP

20 b0 (1S +m1) M) atpn?

F1(HS1+HN1, MS. +p+q; MS,+MN +p+q; 1-a,) °

2F1(HSZ+HN2, MS,+p+q; MS,+MN,+p+q; 1-u2) (3.9a)

(3.9b)
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Under the H, hypothesis, P2 = 0, and the CDF becomes

rodu), = PO 0N

NT-Z
- o2 % 13k
q= &
N.~1
=1-00) T . (3.10)
Bq. (3.10) is the same as the equation for the CDF of the sample MSCC under H,
for known noise powers, Eq. (4.8) of reference 3. This is not surprising
because the powers normalize out of the sample MSCC whenever the noise powers

are constant, event if they are unknown Eqs. (2.4-2.6).
3.2 Detection Performance

The detection performance is quantified by the probability of false alarm
(Pp,) and the probability of detection (Pp). These are defined as

2
Pp = - ’“’el"'r)1 (3.11)

-1
2 _ 2,'T
Py = “"“’t"‘r)o = (1-p0) (3.12)

These equations are evaluated for equal channel conditions where

MS = m1 = Hsz (3.13a)

MN = HN1 = HNZ (3.13b)

SNR = Sllll.| s SNRZ (3.13¢)
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The performance is quantified by (1) solving Eq. (3.12) for the threshold, p%,
for a specified Pp,, and (2) numerically solving Eq. (3.11) for the SNR
required for the specified Py, Ny, and P2.

The performance is plotted as a function of Np in Figure 3.1. It is
immediately apparent that (1) uncertainty in signal and noise powers can
require large increases in SNR to achieve the same performance in the absence
of fluctuation, and (2) fluctuation effects decrease as the uncertainty
decreases (i.e., MS and MN increase).

The performance is plotted as a function of Pp for various Np¢'s in
Figures 3.2-3.4. It is apparent that fluctuation effects decrease as MS and
MN increase. SNR is more sensitive to signal power fluctuations than to noise
power fluctuations because the required SNR is larger for NS = 2, M = 10, than
for MS = 10, MN = 2, This effect is larger for larger Pp's (> 0.4). The SNR
sensitivity to signal fluctuations follows from the fact that the PFA
threshold is independent of noise power fluctuations.

3.3 Discussion

The cumulative density function (CDF) of the sample MSCC was derived for
slow fluctuations. The CDF of the sample MSCC is independent of noise power
fluctuations under the H, hypothesis,

It is observed that the SNR required to achieve the desired operating
point decreased as the fluctuations decreased. The SNR is more sensitive to
signal power fluctuations than to noise power fluctuations because the PFA
threshold is independent of noise power fluctuations. Slow fluctuations can
require a 4-6 dB increased SNR over the SNR required to achieve comparable
performance in the absence of fluctuation.
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4. RAPID FLUCTUATION

Rapid fluctuation occurs when the power level fluctuations from sample to
Same are so large that successive samples may be considered independent. The
cumulative distribution function (CDF) of the sample magnitude-squared corre-
lation coefficient (MSCC) is derived in Section 4.1, and the detection per-
formance of the sample MSCC is presented in Section 4.2. The results are
summarized and the implications discussed in Section 4.3.

4.1 CDF of the Sample MSCC

The CDF of the sample MSCC for rapid fluctuation is difficult to derive
because the probability density function (PDF) of the observation, Zg defined
in Eq. (2.3), is unknown for Gamma distributed fluctuations. This problem is
overcome by using an Edgeworth series approximation to the PDF of 2y (Appen-
dix B). The only way to incorporte the Edgeworth series into the derivatives
of the CDF of the sample MSCC is to use an Edgeworth series approximation to
the PDF of the sample auto-covariance matrix (Chapter 2). The Edgewurth
series approximation to the CDF of the sample MSCC for rapid fluctuation is
derived in Appendix C. The CDF of the sample MSCC with signal present is

2 _ 2 5,02
GPglNgy = ROATING, « NFCPCIND) (4.1)
where
N.-2
N 5 2.k 2.2
2 2
FP NG, = (1-6)) Ea“'pf-) oF 1 (Np,k+151;0500) (4.2)

is the CDF.of P2 for no fluctuation (ref. 1); D% € (0,1) is the threshold; and
§(9§|NT)1 is the Edgeworth series correction factor.

Since G(pflﬂT) and F(D%|NT) are CDFs, §(1|NT)1 = 0 because G(1|NT)1 s
F(1|NT)1 = 1. The correction factor is
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" F(o{|N.) = PR F(p 04N -2, Ny Ny 1)
+ PRF(pZ|0,8,-2,N N +1,1)
g + PRF(o]|0,N -2, N, N 2, 1)
3 T'T
2
; . + PRuF(pt|O,NT-2,NT+1,NT+1,1)
g 2
y + PRSF(ptIO,NT-1,NT+1,NT+1,1)
& . Paﬁr(p§|o,NT-1,NT+1,NT+2,1)
< + PR_F(p2[0,N_,N_+2,N_+2,1)
) T el
v 2 -
;3 + PRgF(pp |1,N,-2,N,+1,N,41,1)
N
2
: PR F(p, |1,N -2 ,N +1,N 41,2
“ + g(ptI’T ’T+’T+')
2
. + PR1°F(pt[1.NT-2,NT+1,NT+2,2)
': 2
+ PR F(p |1,0,-2,8,42,N,42,2)
2
+ PR,ZF(pt|2,NT-2,NT+2,NT+2,3) (4.3)
3
3 where
F(p2]a,8,0,8,7) =
4 Pp %P2 0,9,Y) =

2(00-1)
2 2
(6*1)0.4 Z(k+1) (1-pt (6 ¢o“"k+1,Y:°°'8+2,ptpT (4.4a)

...........
N ~ <

ARSI o . DR PEANE P T T L L LT NN .
W I I, N, A o T """"Mﬁ_'.‘.m‘.ﬁu‘;.;g_g;-g_‘:;: ‘L'..‘J




[
o .o
o
PRy

_ T(xen)
(x)n ]

. Tx) (4.4b)
> is Pochammer's symbol, where the PR's are:
D
. (Nt-1)2 p N2
e PR, = CNT—NT:'T (1-p,) (4.5a)
(NT-1)2 5 Nom1 Ny (N -1) p N2

PR, = c"s’_NT'H— (1-0.1.) - ucn7 —NTT— (1-pp) (4.5b)
2

N N_-1 N -2

- _ 2y T _ 2y T -2, T _
A PR, = (CN, (1-pp) CN (1-gp) © + 2N (17p7) © )(Np=1) (4.5¢)
L
N No-1
_ 2,1 2,°T
5 PR, = (CNu(1-p,r) - CN_(1-pp)
- Np=2 Np(No=1)
_2\T T\ 1
- + 2CN, (1-p7) _"T*’ (4.5d)
& NE o Mg

PR; = (= CNy + 2CN¢) WM)T)
‘D

N,-1
2,T

- + 2CN,N,(1-0]) , (4.5e)
‘:‘b P NT

PRg = (- 2CN, + CN; - 2CN,) Ny(1-pp)
a » 2 Np=1

| + (cN(3-p) - HCN, - HON) N (1-p0) (4.5¢)
2
- _ 2
™ PR, = (cu1 + 2CN, ~ CNy + CN, (1+pp)
] CN. + 2CN. + CN, )(N.+1)(1 2)NT (4.5g)
~ CNg + g + CNpJ(Nps -Prp 58




N,_-1
2,’T 2,°T
(CN1(1-pT) - 20N (1-p})

PR

[« <]
"

2 2
2 -
* (:N"lp'l'(1 pT) Np#1

No-1

2,°T
(- 2CNg (Ny=1)(1-py)
2)N.r-z Np(Np=1)
T NT+1

PR

O
[1]

2
+ 4CN7NTpT(1-p

N.-

PR

N
2, T 2 2,°T
10 (- 2083(1-pT) + (2CN py + CNg)(1-pp)

N,-2
2,72, T
- 80N7pr(1-pr) ) Np(Ng-1)

2 2, T
PR + ZCNupT)(1-pT)

1

- (- (e, - CN,

2 2 2 2
+ (2CN oy + 20N (1-207) - ucu7pr)(1-pr)
NT(NT+1)

Np=1

N .
2, T 2 2\°T
PR12 (CN2(1-pT) - CN6pT)1-pT)

N,-2
+ CNLpR(1-p2) T N (N 1) (=)

where the CN's (Appendix D) are

SNRZ + MS_/MN. SNR® + NS_/MN
o 1 /M | SR, ¢ NS,/

2 T2
MS_(SNR +1) MS, (SNR,+1)
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(4.5n)

(4.51)

(4.53)

T-1] .

..
VO
A tn'

(4.5k)

.
a a4

(4.51)

(4.6a)
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CN, = 3,3 (1 - BIAS'/9)
. = 202 SNR, . SNR, |

3 T MS1(SNR1*1) HSZ(SNR2+1)
o2
CNu > BIAS (1 - BIAS)
CN; = CN, - 20N, - 2N,
CN

_ _ -3
CNg = 20N, - % + CNo}

- _ 2
CH, = CN, + 2CN, - CN; + CN,(1+p])

and where
2 oo SNR, SNR, 2
Pp = (SNR,+1) (SNR,+1) Ps
T(Ms, + 1/2) T(MS, + 1/2) 2
BIAS =
/MS_MS_, T'(Ms,) I'(MS.)
12 1 2

SNR, = Eklﬁk , and

(4.6b)

(4.6c)

(4.6d)

(4.6e)

. (4.6g)

(4.7a)

(4.7v)

(4.7Tc)

Pg is the correlation coefficient between the signal components.

where

Under the H, hypothesis, p§ = SNR, = O.
becomes

2 a2 s 2
Glo Ny, = Floy|Np), + NF(R]

Nedo
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Then the CDF of the sample MSCC
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=
4

[

T 2
N+ 1) (N=1) PPy INp),

lm% + 2N.-6
CN,

=R

~

©

AL

=
-3

~
[+]

[]

) (GNT + 10)

2
N+ 1 PN

T

+ uF(pi|NT+2)°] , and (4.8¢c)

CN, = =+ . (4.8d)
1 MN, T M, *

4.2 Detection Performance

The detection performance is quantified by the probability of false alarm

(PFA) and the probability of detection (PD). These are defined as:

1 - c(pﬁlu@, (4.9)

o
’

Pea

2
1- G“’tl"'r)o , (4.10)

where G(D%INT)1 and G(D%lNT)o are defined in Eqs. (4.1) - (4.8). These equa-
tions are evaluated for equal channel conditions where

MS = HS1,_ = HSZ (4.11a)
gﬁi = m1 = mz . (u.13°)
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The equation expressing the relationship between the PFA' p%, and Ny for

ii no fluctuation is well known (ref. 1). It is
N,.-1
2, T
PFA = (1 - Dt) (4.13)

By comparing Eq. (4.13) to Eq. (4.10), it is apparent that rapid fluctuation
affects the Pp, threshold, p%. One of the attractions of using the sample
MSCC for detection is that p% is independent of the noise properties in the

P
+

E; absence of fluctuations. However, this property does not hold when rapid
fluctuations are present in the noise. The rapid fluctuation thresholds for a

!! specified Pp, and Ny are plotted in Figure 4.1 for various fluctuation

) parameters. The p% are computed by numerically solving Eq. (4.10) for speci-

{ﬁ fied Pp,, Ny, and MN. It is seen that rapid fluctuation has the largest

- effect on p2 for 6 < Np < 500. It is also apparent that the influence of

s rapid fluctuation decreases with increasing fluctuation degrees of freedom

- (MN) because the variance of the fluctuation process decreases as MN

‘5 increases, Eg. (2.16).

.

The performance is plotted as a function of Np in Figure 4.2. It is -
apparent that (1) rapid fluctuation can require large increases in SNR with iy
respect to the SNR in the absence of fluctuation, (2) fluctuation effects
i decrease as MS and MN increase, and (3) fluctuation effects decrease as Ny A

increases. This means that the performance becomes somewhat insensitive to -

:j rapid fluctuation for large Np. 1
>
. The performance is plotted as a function of Pp for various Np's in Fig-
e ures 4.3 through 4.5. It is apparent tht fluctuation effects decrease as MS
and MN increase. SNR is more sensitive to noise power fluctuations than to
'i signal power fluctuations because the required SNR is larger for MS = 10,
MN = 2, than for MS = 2, MN = 10. This sensitivity follows from the fact that
:f the PFA threshold is dependent on the noise power fluctuations. It is also
o seen that the effects of rapid fluctuation can be reduced by increasing Np.
»
\:
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4,3 Discussion

The cumulative density function (CDF) of the sample MSCC wrs derived for
rapid fluctuation. Due to the mathematical difficulties inherent in the deri-

0
[
-

vation, the CDF was approximated with an Edgeworth series.

The CDF of the sample MSCC under H, is dependent on the noise power
fluctuation parameters. Consequently, the sample MSCC loses some of its
attractiveness as a detector because the PFA threshold is dependent on the
fluctuation parameters. This is in contrast to the CDF of the sample MSCC in

!E the absence of fluctuations where the CDF is only dependent on the noise

i degrees of freedom.

“ It is observed that the SNR required to achieve the desired operating

~ point decreased as the fluctuation decreased (i.e., MS and MN increased). The
2 SNR is more sensitive to noise power fluctuations than to signal power fluctu-
= ations because the Pp, threshold is affected by the noise power fluctuation.
iﬁ Rapid fluctuations can require a 3-4 dB increase in SNR over the SNR required

to achieve the comparable performance in the absence of fluctuations.
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5. CONCLUSIONS

A detailed analysis of the detection performance of the sample magnitude-
squared correlation coefficient (MSCC) in the presence of fluctuations has
been presented. Fluctuations can be characterized as slow or rapid, or as
anything in between. The fluctuation process samples are completely corre-
lated over the observation interval for slow fluctuation, while the fluctua-
tion process samples are completely uncorrelated over the observation interval
for rapid fluctuations. These two bounds on fluctuations can be studied
analytically. Simulation is required to study fluctuation processes with cor-
relation times that lie between the bounds.

It is concluded that fluctuations require a 3-4 dB increase in SNR for
rapid fluctuations and a 4-6 dB increase in SNR for slow fluctuations over the
SNR required to achieve comparable peformance in the absence of fluctua-
tions. 1In all fluctuation cases, the required SNR decreases as the fluctua-
tion becomes "less" random (i.e., the variance decreases). However, the
effects of slow fluctuation are basically independent of the signal time-
bandwidth product (NT), while the effects of rapid fluctuation can be reduced
by increasing Np.

The Pp, threshold (p%) is independent of the noise fluctuation process
for slow fluctuations, but it is dependent on the fluctuation process for
rapid fluctuation. It can be concluded that p% is dependent on the fluctua-
tion process for all sorrelation times evcept for slow fluctuation. The
dependency of p% on the noise fluctuation process decreases as the correlation
time of the fluctuation process increases.

The SNR for rapid fluctuations is more sensitive to noise power fluctua-
tions than to signal power fluctuations for all fluctuation processes with
correlation times less than the observation interval. This is caused by the
fact that (1) p% is dependent on the noise fluctuation process and (2) some of
the noise dependency is accounted for in selecting p%. On the other hand, the
SNR for slow fluctuations is more sensitive to signal power fluctuations than
to noise power fluctuations.
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Appendix A
GAMMA DISTRIBUTION

The normalized Gamma probability density function (PDF) is the standard
Gamma PDF normalized so that the mean is independent of the degrees of free-
dom. The normalized Gamma PDF is

xﬁ_1 e-Mx/xo
w0 *20
(xO/M) Ir'(M)
f(x) = (A.1)
(o} ’ x <0

where M is the degrees of freedom and X, 1s the mean. The ath moment of x is

M= E(x®
- -]
-Mx/x
= __—__li—__— xM+°'1e ° 4x
(x /M) "T(M) 0
. I(Meq) xg (A.2)
MPr(M)
Therefore, the mean and variance are:
X = H1 = X, (A.3a)

Note that the variance vanishes as Meow,
Let x and y be two independent Gamma distributed random variables with
degrees of freedom M, and My, respectively, and mean x, and y,, respec-

tively. Define the random variable

z = x/y . (A.4)

-



What is the PDF of z? Define the auxiliary variable w = y.
of transformation from (x,y) to (w,z) is

1y ’ - x/y2

J(x,y) = = 1/y = i\/w .
0 , 1
Then,
f(z,w) = foy(zw,w)
and
[ -] -]
r(z) = / f(z,w) dw = / wfxy/xw,w) dw .
0 0
Therefore,
Mx—1
f(z) = M - M
X y
(xO/Hx) P(Hx) (xo/uy) F(Hy)
(- -
/ wux+uy-1 e‘("xz”‘o + M y/yo)w o
0
M -1
r
(H‘+H ) aﬁx z X 20
RICBNTE M, +M ’ ~
) N (1eaz) * Y
0 ’ z <0
where
Mxyo
a = M x
yo
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(A.5)

(A.6a)

(A.6b)
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The mean and variance of z are:

M xo
M = —_ for M > 1
z Hy-1 Yo y
-1
2 My 2
o, = Mx "y'z (Hz) for My > 2 .

Define the random variable

z+1

What is the PDF of p? It is easily shown that

f (_2.

(1-p)2

Substitue Eq. (A.6a) into Eq. (A.9). Then,

rM ) M Moy

T(M ) (M) © 8 M
ey = < 0 (seene)* Y

0
The 8'th moment of p is

E(o?)

up(B)
I'(Mx-o-M ) I'(M‘«o-B)

e T x+ y*

according to Eq. 3.197.3 of Reference A1l.

--------

0<p<i

otherwise

2F1(Hx+Hy, Mx+B; Hx+Hy+B; 1-a)

(A.Ta)

(A.7b)

(A.8)

(A.9)

(A.10)

(A.11)
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Appendix B
EDGEWORTH SERIES FOR COMPLEX SPHERICALLY INVARIATE RANDOM PROCESSES

The derivation of the Edgeworth Series for complex, spherically invariant
random processes is presented in this appendix. A random process is spheri-
cally invariant if and only if it is a zero-mean Gaussian process that is
multiplied by an independent random variable (Ref. B.1). The derivation of
the Edgeworth Series for a specific type of spherically invariant random pro-
cess is obtained by (1) computing the moment generating function, (2) comput-
ing the cumulant generating function from the moment generating function, and
(3) finally identifying terms.

B.1 Process Description

Let Z = (z,,zZ)T be a two-dimensional, complex zero compound process
described as

(B.1)

where S and Ny are independent, non-negative random variables called power
processes, which are also independent of x, and Ygi Xx and y) are independent,
Zero mean complex Gaussian random variables with unit variance; Pg is the cor-
relation coefficient of xq and X3 and T indicates transpose. Given Sy and
Nk, Z is a two-dimensional, zero mean, complex Gaussian random variable with
covariance matrix

S
S1+N 3182 Ds
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where * indicates complex conjugate. Therefore, the probability density
function (PDF) of Z, given the power process, is

-1
1 =Z'R 'Z
£(2]S,,S,,M,,M,) = We (B.3)

where ' indicates complex conjugate of the transpose. Finally, the PDF of z

is

£(z) = E{f(Z|S1,Sz,N1,N2)}S /S5 N, N, (B.4)
!1’

where E{‘}S1.SZ,N1,N2 is the expectation over S;,S,,Nq,N,.

B.2 Moment Generating Function

The moment generating function, given the power processes, is
¢'Ro
M (8]S,,S,,N,,N,) = e (B.5a)

where

o = (6,007 . (B.5b)

Expand Eq. (B.5a):

M (¢S N,)

1’ 2’ 1’

]
exp {r1|¢1|2 + 92|¢2|2 + 2/8152 Re(ps¢1¢2)}

® 2 -k k
355153530 >N
- ZL! ¢ k,q,p
2=0 k=0 q=0 p=0
k-p+a,** 9P g k-qep,-qep
L) 4, o, ¢, (B.6a)
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1.
X vwhere
L 2ok
X - () (R-ky(k 2 k-p p R-k-q %q
L Cokap = G Cq IR)(88) % oy pp 07 oy (B.6b)
1
A and [") is the binomial coefficient. From the discussion in section B.1, we

k

. know that
, 2P, (¢)

3 : Lu (B.Ta)
‘ =0
k. ‘T-j where

z 2 -k k

2 = T oK-P+a,"2-q-pyL-k-q+p, *q+p
H 3 Bl Z -Zcﬂ.k,q,p LN S o, (B.7b)
| * k=0 q=0 p=0

¥

= _ (2)(2-ky(k 2-k-q_%q

C s = (I SIn, kep,toidmyp, )oK %) (8.7¢)
§ -
- m(e = s (3.7)

X

B.3 Cumulant Generating Function

2 RS
E > The cumulant generating function is
<K
j 2 K, (9) = 2n (M (4))

1 = 2 (1 + M (0))
NI ® ~ u

;-. (M_(¢))

i. .d'- - u+1 L—-

| = (-1 = (B.8)
z: ‘_',; u=1
i

1
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a g
where M,(0) = 0. In light of the discussion in section (B.2), K,(0) can be :
expanded in two ways. First, 'i
@ '.:J
N Kz(¢) = E 9,.(¢) (B.8a) 8
- r=1 .
where i
Y ) X
_ z : uvxy u, 8 v x, &y -
e U+V4X+Y=r .J
! is a polynomial of rth order, and 8
h & .1
A au+v+x+y N
. :. = K . . K
2 T st akas e (8:5e) 3
$,99, 36,34, |
3 ;
Dt The second way is to substitute Eq. (B.7) into Eq. (B.8): Z:
u g
< o -9
- f=1
. . Kz( ¢) = u (Bog)
-:,' U=
x.‘.‘
“ q Only terms up to r=4 in Eq. (B.8) will be considered because of the com-
< plexity of the problem. By expanding Eqs. (B.8) and (B.9) and identifying
o terms, it follows that Q's are related to the P's in the following manner:
«1
(0 = &(4 = o (B.10a)
6,(8). = P, (#) (B.10b)
3 HO
8(® = P (4) - > . (B.10c)
.";‘
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Also, the A's are
BZ(Q)X'S :

XZOOO

A

1100

A0011

20110

1001

Ou(¢)l's :

x2200

X0o022

X220

A2002

11210—

X0121

A2101

X012

1010 .©

related to the E's according to the following:

= Aggoo = A

S

= Ci100

= Cii01

= Ci000

= %010

= 4C - 262

= UCys00 1100
- —2

= HCyp0, = 2Cyq09

= MC. 202

= H4Cy000 = 2C4000

- —2
= HCy020 = 2Cy010

= 2C3100 = 2C1000%1100
= 203101 = 2C4000%1101
= 2C3449 = 2C4010C1100

= 205441 -~ 2C4010C1101
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(B.11)

(B.12)
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X111 = ©2010%201 = €1100%1101 = 10001010

2nd all other A's = 0.

Substitute Eq. (B.7) into Eqs. (B.11) and (B.12). Then,

- Migo = m(1,00 = E{r;}
i; Aoo11 = M(1,00 = Elr,}
.% x0110 = m1(0,1)m2(0,1)ps = E{/g} E{'/-s-;}ps
;ﬁ Xoo1 = 110
a Apooo = 2(my(2,0) = m,(1,0)%)
- Aooz2 = 2(m,(2,0) ~ m2(1,o)2)
&~
o 2 272
- AOZZO = 2[!!1(0,2)!!2(0,2) - m1(0,1) m2(0,1) )ps (B.13)
.‘4;
J Mooz = 220
i! \210 * 2(m1(1,1)m2(0,1) - m1(1,0)m1(o,1)m2(o,1))ps
.r;,' *
e 22101 = Ma210
.~ A = 2(m,(0,1)m,(1,1) - m,(1,0)m,(0,1)m,(0 1))
- 0121 ° 119 /BT n,(1,0)m,10,1)m,(0,1)Jog
' ”
. Moz * o
g: Appy = (2,(0,2)m,00,2) - m,(0,1)%m,00,1)%) [, |
r
.l
(= ]
=
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'; Therefore, :
| ) i
' K (8) = 8,(0) +0,(8) 1
S - 2 2, U] :
= Ayq00!®4 * Xoo1 0" 0110"1" ""01104’1" :

a A A '

' ¢ 2200 [} 0022 4 (
2 A 2 .‘
s ® * .
—@4» o2 22200%, ;

o) {
X K-: q
5 . 4
< . 4
s R 12;-0 b 0F ¢ 1.210I 2 ¢ ]
A )
A Y A 2 ‘
. 0121,%.2, % 0121 » ]

) * o000, ¢ 000, f
B.4 Edgeworth Series 1

[

(B.15)

(B.16)
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Substitute Eq. (B.14) into Eq. (B.16):

62(0) eu(w 9(¢ 9(¢)
Hz(¢) z e e = . (B.17)

Using only the first two terms of the series expansion for the exponential,

0,(¢)
2
M () = (1« en(¢))e
A A
X2200 0022
= [1 |¢1| |¢2|
&
xozzo 2, "0220 2 #2

+ *, "’2 $19,

x .2 A
1210 1
1¢1 0+ 210 2¢ "o,

0121 R A0121 #2

9,050, + ¢ ¢2"’2
2 2 '
Aq1109 1518, ]e° M, (B.18)
It is easily shown that

o, fe®' R0 o L ¢'R (B.19a)

_32 eb'RO (B.19b)

4_¢'Ré
le,1%"

2 '~ '~
¢: ¢§e¢ RO LZ- e¢ Ré (B.19¢c)

2 .3 'R
"’f’; o?'RO _8_2 ob' RO (B.19d)
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. _eRe
3r113r12

2 -~

. eRe
T

= 32 e¢'§¢
Iry59r,,

2 -~

. & wie
Iy,

= 32 3¢'§¢
ar,,3r,,

Substitute Eq. (B.19) into Eq. (B.18). Then,
2
TOR [1 , 200 2 Joozz az
v, 2 4 ard,
11
2 %
M220 3 . M220 32
5.2 3 . .2
12 r12
Ay 2
Ma1o &8 , M2t 3
2 or..or 2 #
11912 ar o,
oize 2 har R
2 or,.,dr 2 ]
227712 8r223r12
2
+ A ) 'R
LR
1902
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(B.19e)

(B.19f)

(B.19g) -

(B.1%h)

(B.191)
ﬂ
B
¢
-J
g
1
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The probability density function of z is obtained by taking the inverse
Fourier transform of M,(0).

Eq. (B.20), we have

g(2)

where

........

Taking the inverse Fourier transform of

. o . - . - -
- - . ~ - - - - [
KN TPV TR PN vy

(£.21)

(B.22)
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Appendix C
EDGEWORTH SERIES FOR THE CUMULATIVE DENSITY FUNCTION OF
THE MSCC FOR A SPHERICALLY INVARIANT PROCESS

The derivation of the probability and cumulative density functions (PDF
and CDF, respectively) of the sample magnitude-squared correlation coefficient
(MScC) is difficult for non-Gaussian signals. The Edgeworth series for the
PDF of the sample ﬁSCC will be developed for signals that are spherically
invariant. The approach used is to derive the PDF of the sample auto-
covariance matrix of the observations and then make a chnage of variables to
obtain the PDF of the sample MSCC. The processes involved in the derivation
are described in section C.1. The derivation of the characteristic functions
and PDF of the sample auto-covariance matrix is presented in sections C.2 and
C.3, respectively. The PDF of the sample MSCC is obtained from the PDF of the
sample auto-covariance matrix in section C.4. Finally, the CDF is obtained in
section C.5.

C.1 Approach

Let Zgp be a two-dimensional zero mean complex random column vector with
elements z1(1) and zz(l) representing samples from channels 1 and 2 at time
lTs for £ = 1,2,...,Np. Tg is the sampling interval, and T = NyTg is the
observation interval. The cross-covariance matrix of Z(%) is defined as:

R (L) = EZ(2) 2' ()} (c.1) ]
vhere E{*} denotes statistical expectation and ' is the complex conjugate of h*
the transpose. Let 7

Zy = /s(2) Xy + YN(L) Yy (C.2)

where S(L) and N(%) are the independent two-dimensional power vectors for
signal and noise, respectively; X(%) is a two-dimensional unit-variance,




jo
Zero-mean, complex Gaussian random vector with Pre

.l coefficient between x;(L) and x,(%); and Y(%) is a two-dimensional unit-

variance, zero-mean, complex Gaussian random vector with independent compo-

S as the correlation

'-\.: nents.
S
'l Given Sk and Nk, Zz is a two-dimensional, zero mean, complex Gaussian
o random variable with covariance matrix
[ s, + N, Y515, g
R = .
!; L/’s1s2 Py S, + N,
R —
;1% ry Y515, P
= s
3 7515, P 2

where ®* indicates complex conjugate.

: The exact form of the PDF of Zg is unknown. However, the Edgeworth
by series form of the PDF is known (see Appendix B). The PDF of 2y is

g(zz) = (1 +P) f(zz) (c.3)

i O
y 2 ) 2
3r11 ar22
G2 22 2 4%
+ m () Y —E
| 8 8r2 3 art
12 12
+ -(-:i (o] 32 + Pt 32 N
2 s 3r113r12 s 3r118r12
- (cont.)
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2 2 )
+Clo | =5 (c.u) 1
6'"s arnarzz |
4
A 3
¢, = 2(m(2,0) - m,(1,00%) (C.5a) 1
2 iy
c, = 2[m2(2,0) - m,(1,0) ) (C.5b) a
- 2 2 4
Cy = 2[n1(0,2) m,(0,2) - m,(0,1)° m,(0,1) ) (C.5¢) :
Cy = 2(-1(1,1) m,(0,1) - m,(1,0) m,(0,1) m2(0,1)) (C.5d) é
Cs = 2(m,(0,1) my(1,1) - m,(1,0) m,(0,1) m,(0,1)) (C.5e) .
. 2 2 ‘
c6 = m1(0.2) m2(0.2) - m1(0,1) m2(0.1) (C.5¢)
s (a,8) = 1?.{1:';:l SE/Z} (C.6)
-Z!RZ
- 1 L4
r(zz) = _—n2|§|"2 e (C.7)
E{r,} E(/5,5,} o4 P11 T2
R = - (Coa)
E{YSS,} o} E{r,} rf2 T2
The sample MSCC can be computed from the sample auto-correlation
matrix. The two-dimensional positive definite Hermetian sample auto-
correlation matrix is
Np
A = FA!' (C.9)
=1
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i where
i z,2!
A, - ﬁ L (C.10)
oo T
.- Let
a a K
~ A = [ " ‘2] . (C.11) :
at a 3
. 12 22 :
)
-“
The sample MSCC is the sample magnitude-squared cross-correlation coefficient "
.-. between z(2) and z,(2) and is given by
X lagl
;\ o2 = 2 1§ . (C.12)
. 11722
s$ .
P The PDF of p2 can be derived from the PDF of A by (1) performing the change of jl
R
P variables indicated in Eq. (C.6) and (2) integrating out the auxiliary varia- ]
i" bles Ayq, Ay, and the phase angle of a,. i
~
’., -~
i :-;, C.2 Characteristic Function of A N
i The characteristic function of Ag, using the Edgeworth form of the PDF of 1
- JTR(OA,/Ng) »
iy M (¢) = E {e
Ay
Zi(d/N)2
! . B {e A 2 ) }
) -51 + Pz
(.' s -~ (Co13)
A 1 - sR|
T
P
b vhere |I - Jﬁ%—l'1 is the characteristic function of Ag assuming the PDF of Z,
.. is r(z,') as de;ined in Eqs. (C&) through (C.8),
N
-~
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Substitute Eq. (C.4) into Eq. (C.13) and carry out the indicated partial dif-

ferentiation. After some tedious algebra,
M, @ = D7'(1+9)
L D
where
D = |1-3R¥
T
qQ = Q1+Q2+C3
@ Va2 Ko
1 ] 2 22 2 1
c
_3(.2..92 2.2
+ —2(ogre; + 03°r},)

'\P

C (o1 , )
4 PaT 12522 * PeT12722

- C_(p r. r.. o+ p.r r..)

+

+

58 12 1N s 12 22

2 2y | el
Celogl (’11'22 + Ir,l%)

Cirpo®yy = Cory¥yn

2 8 48 .2
cy(pgry 0, + 08 r2®12)

) -
cutps’12°11 + P8P by = (P08 vy + 020 0ry)))

SNEN S NN S N

(C.14a)

(C.14b)

(C.1l4e)

(C.14d)

(cont.)
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& & - L ] l -
| . C5(93r1¢22 +Poe 0 - (P o0 v 0% r ) g
~c o |?(r. &, +r & _ -r o0 -r'¢)“—| (C.14e) ‘
6 s 1111 22 22 1212 12 12 ‘ N3 : -
T 1
T4
C c -]
= B 2 ¢2 >
Q=) 7 % 4
02082 . a2a2
+ c3(ps¢12 + 0t ¢12)
c,(p b ¢ pRd__ o )
M AP ASPAST ERReAE PAST !
&  { -
* C5(Pg912%5p + P¥15%2,) 3
y 2 2, { 1 .
+ cslpsl (6,0, + |¢12| ) } 2 (C.14r) i
) T «
‘ Since the Ag's are independent, .
- N, R
™) M (¢) = MA,'W) (c.15) |
3 Substitute Eq. (C.1d4a) into Eq. (C.15): ]
- N 3
M(® = D “T[1 . ?| T
=N
9 X~ D T[1 . NTQ/DZI
o~
- -Np -(NT+2)
= D + NTQD (C.16)
C.3 Probability Density Function of A
N
The PDF of A is obtained by taking the inverse Fourier transform of M,(%)
"' given in Eqs. (C.14) - (C.16). The inverse Fourier transform of DN is the
- complex Wishart
< fi
3‘-‘ | | P
< f(AINg) = C(Ng) V(A Np) (C.17a) !
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B Ny -NyTR(AS)
VAN = [A] T e (C.17b)
C(N,) = “ZNTBlNT (C.17¢)
T ° nr(n.r)r(uT - 1) *
. e 11 %12
S = R = (C.17d)
[ ]
2 %22

which was derived by Goodman (ref. C.1). Correspondingly, the PDF represented
by the characteristic function p-(N+2) 34 £(A|Nps2).

By making use of the fact that the inverse Fourier transform of ¢£kD-NT
can be obtained by (3%/3al,)f(A|Np), the PDF of A can be obtained from M,(¢)
by taking the proper partial derivatives with respect to the ag of
f(A|Np+2). Therefore, substitute Eqs. (C.17) into Eqs. (C.1d) - (C.16) and
perform the indicated partial differentiation. After much tedious algebra,

8(A) = f(A|Ng) + NpUCA|Ng) (C.18a)

where U is the correction term of f(A|NT) which is the PDF of A for Z, complex
Gaussian.

UGA|Np) = U (A|Np) + Uy(A[Ng) + Ug(A|Ny) (C.18b)

{‘fl 2 % 2 2,2 22

c
4 3,2,
NyUy (A[Np) Z T22*7 T11* 7 P2+ e5TR)

[ )
(pgris + P3r)(Cyry, + Coryy)

+

2 2
Celosl™(F1yr22 + 17121 } y

{ [NT(NT - 1) - 2N,TR(AS) + TR(AS)®
(cont.)
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EA

C(Np + 2) Ny(Np = 1)V(AIN)

-

. {Z(NT + 1) |s] -~ 2]s| rn(as)] .

e "y
P

C(Np + 2) NpV(A|Ap + 1)

!! + |s|2cmT +2) V(A|N, + 2)} (C.18¢)
Y

4 .

N%UZ(A‘NT) = - Cry, {[(NT - May, - aZZTR(AS)] .

| C(Np + 2) Np(Np - 1) V(A|Np)
3
- - l"r’11 - 3,18l - s11““8)] )
£y
& C(Np + 2) Ny V(A|Ny + 1)
o - IS8y Cthy + 2) V(AN 2)}
% - cz’11{[‘"r - Va,, - a11““3)] )
i C(Np + 2) N
!‘ T T(Np = 1) V(A|Np)
3 | - [“rszz - a,,ls| - szer(As)] .

C(Np + 2) NoV(A|Ng + 1)

N

} - |s|=22 C(Ny + 2) V(AluT + 2)}

, + Cylegry, + o3ry))
- 2

:[(NT = Day, - a22“(“3)] :

- (cont.)
i
b
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a
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AY
CNp + 2)N Ny(Ny = 1) V(A|Ny)
. - [Msyy - ag,l8] - 5, mRUS)| -
b -
{3 C(Np + 2) N VAN, + 1)
. T T T
! - |S|s11C(NT + 2) V(A|NT+ 2)}
4
- * * 1
2 + C5lpgriy + ofryp) ;
;! %I(NT - Day, - a11TR(AS)| . i
o C(Np + 2) Np(Ng = 1) V(A[N)
0 [NT S22 = 21118 - 322TR(AS)] :
- C(Ny + 2) NpV(A|Ny + 1)
- [3[822 C(NT + 2) V(A[NT + 2)}

= (Cyryy + Coryy)

#
{la11311(°sa12 *+ 05 312

4"

. * 35535(pga, + o82yp)
+ |a |2( s* + pis.,))
Lo 121 *Ps¥12 T PsTi2
>, + (p.a%s. _ + o%a._st)
- Ps%12%12 7 Ps™12712
L)l
7 - (Np =~ Dpgat;, + °§a12)l .
iy CNp + 2) Np(Njy - 1) V(A|N)
3 (cont.)
!
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] g
* la11311(°ss12 + 03842)
]
ML P P PALA PR LIPY

2 3 ]
Is121"(pga}, + p2a,,)

+

2 2
] L]
(pss12a12 * pss12a12)

+

Np(pgsy, + P3sy,)

Sl (pgat, + °sa12)l

C(Np + 2) NpV(A|Ng + 1)

|I51¢o 8, + o83,

C(Np + 2) V(A[N; + 2) ;

2
- Cglog| {I(NT -

[ § t
ORI YR YRR R PL PR s PLIPY

2 2
- (@339 *+ 3558550 ¢)

+8_.r..)

(344713 22722

311222

)

- #* [ ]
(ag4rpp + ay,r ) (a8, + af,s,,

- (a X (r + rgza )

 }
11311 % 8322322711537, 12

2 &
P RCPCIE R LY

2 2
[ ) ] )
(rpa1231, + r12;,31)
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NZUS(A|Np) =

c(NT + 2) NT(NT -1) V(A|NT)

&
MR PLEPY

+

- ]
1 Nplryg3yq + P95, + T8t

+ |shta )

(s

+

11822 11722 * 32222

2 2
3% Y 3050720

+

)(a )

(r

+

]
11311 * Tpp850)(a 537, + aj,sy,

(a

+

+

3 #*
11511 * 353, (P p8h, + ry,s,))

+r% g af )

2
]
(r,8122 12%12%12

12712712

+

+

2
(|s12| - |S|)(r12a:2 + r?2a12)l
C(Np + 2) NpV(A|VN, + 1)

+ r3g,3

- ]
l'sl(’11311 * T22%2 * M2%12 * Ti2 12)|

C(Np + 2) V(A|N, + 2)} (C.18d)

c
2
> { a22C("T + 2) Np(Ngp = 1) V(A|NT)

1

-2a C(Ny + 2) NTV(AlNT + 1)

22%11
+ 32 C(N, + 2) VAN, + 2)
148y T

C,

2
+3 §a11C(NT +2) Np(Np = 1) V(A|Ng)
- 2a

11522C(Ng + 2) NTV(AINT + 1)

2
+ 85,C(Np + 2)V(A|NT + 2)}
(cont.)
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C(Np + 2) No(Np = 1) V(A[Ng)

)

+ 2(p a% _s® 4 p %a

s 12712 12%12

C(Np + 2) NyV(A|Ny + 1)
v (oGsts + p3sTy) -
C(Np + 2) V(A|Ny + 2)}
+ % = (pgaly + p3215)(Cyaz, + Coagy) »
C(Np + 2) Ni(Ny - 1) V(A|N.)
+ [(psa?z * 33,120 (Cysyq + C53y5)
- (pgsfy + 9331, (Cyay, + C5311)] :
C(Np + 2) NpV(A|Np + 1)

] *
+ (pgshy + 033,50 (Cysyy + Cosy))

5922
C(Np + 2) V(A|N; + 2)}

+ Cglog|? {(311322 + lagl® -
C(Np + 2) Np(Np = 1) V(A[NL)

)

- - [ - ]
(311311 + a5;3,, - 3,587, - aY,s,,

C(Np + 2) NoV(A|Np + 1)
(cont.)
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Fer'!

+ (8443,

C(Ny + 2) V(A|NT + 2)}

+ |s,

2y ,
L9

(C.18e)

C.4 Probability Density Function of the Sample MSCC

The PDF of the sample MSCC, 02, is obtained from the PDF of A by (1) per-
forming the change of variables indicated in Eq. (C.12) and (2) integrating

out the auxiliary variables 211, a2, and the phasc angle of ajoe

this operation on Eq. (C.18a), we have

2, _ 2 S 200 s
8(p°%) = £(p%|Np) + N F(o%|N.)

where

N

£(0°IN) = (N - 1D(1 = p2) T(1
T T T

2

- )

2F,(NT, Nps 15 chﬁ)

Performing

(C.19)

NT-Z

(C.19a)

is the PDF of p2 for no fluctuations and Gaussian signals (Ref. C.2); f(QZINT)
is the correction term resulting from the Edgeworth series; and

2 2, 2
I (E{/S1SZ}) Ipsl

|r
12l
p% = =

1122 (E{r1})2(E{r2})2

(C.19b)

Since f£(p?|Np) and g(p?|Ny) are PDF's, f£(p?|N;) must integrate to zero.

Perform the indicated change of variables on U(AINT) in Eq. (C.18) to
obtain E(DZINT). After much tedious integral evaluation and algebra,
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- 2,°T L. 22 09
5 + PRy(1 = p%) 2F (N Npe 15 15 p%7) %
N.~2 *d
2,°T 22 [
+ PR3(1 ~-p7) 2F1(NT,NT+2,1,D pT) ;Ei
Npm2 i1.02.2 ﬁ
. PRu“ - pZ) T 2F1(N.1.~r1,N,r-q.1,1,f:) pT) .
N.-1 ’
2,7 .22
+ PR.(1 - p%) 2F 1 (Np+ 1, Ne15150%0)
N.~1
2.7 L2222
+ PRe(1 = o) 2F 1 (N 1,N,42150%07)
+ PR, (1 ~ 2)NT F,(N_+2,N_+2;1;0° 2)
7T P 2 1 rteNpteilie oy
N..-2
2 2,7 22
+ PRsp (1 - 0% 2F1(NT+1,NT+1,1,p pT)
N..-2
2 2,°T 22
+ Pﬂgp (1 - p%) 2F1(NT+1,NT+1,2,9 p,r)
N,.=2
2 2,7 5. 22
+ PRmp (1 = p%) 2l"1(N,r+1,N.I,*-Z,Z,p p.r)
N..-2
2 2,1 ,.22
+ PR”p (1 -p9 2F1(H,l.-|~2,NT-o-2,2,p pT)
- No=2
4 2,'T 22
+ PR,‘Zp (#1 ~ p%) 21'-’1(N.1,4-2,N,r+2;3;p p.r) (C.20)
where
(N-1)2 o N2
PR, .= cu7 N (- °r) (C.21a)
.'% T
by
(N -1)? , N1 Ny(N~1) Np-2
t
‘o
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N N.-1

PRy = (cN, (1 py) CN (1 - o1)
2. Np—2
+ 20N, (1 - pp) ) (Ng-1) (C.21c)
N N.-1
2.°T 2,7
PR, = [cmun - op) ~ - CNUT - ey
No=2| Np(No=1) 3
2.1 T\ 4
+ 2CN, (1 - py) ——“T“‘ (C.21d) 1
i
Np2 No-1 -
T 2.7 :
PRy = (- CNg + 2cu6) Nl (1 - o) 4
N,.-1 R
+ 20NN, (1 - pi) T (C.21e) 3
( ) 2 NT 1
PRg = (- 2N, + oN; - 20N,) N (1 - pp) d
2 2. N1 .
+ (cu5(3 - pp) - UCN - ucn7) N.(1-p]) (C.211) 1
- 2 .
PR, = (cn1 + 20N, - CN; + CN, (1 + 07)
- CN_. + 2CN. + CN,) (N.+1) (1- 2)NT (C.21g)
5 6 ¥ M) Pr <8
N N.-1
. 2.7 2.
PRy = (cn1(1 - pg) © = 20N (1 - pp)
N.=2 No(Npo=1)
2 2T T T
+ ZCN7pT(1 - pT) _TT“— (C.21n)
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C.5 Cumulative Density Function of the Sample MSCC

The CDF of the sample MSCC is
(P IN,) = fpic(azlu ) af?
e T
where 0 < P < 1 is the threshold.

Substitute Eq. (C.19) into Eq. (C.23). Then,

o(ElNy = BCEIND + NFEIND

(C.22¢e)

(c.22r)

(Cc.22g)

(c.23)

(C.24)
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where :
‘-" _2 .
[ ] 2 2 N T
- 2,k Cqn A2 :
Flpg|Ng) = (1-pp) kz_:ou-pt) oF 1 (Np ke 15150,07) (C.25) -
h = ~
- is the CDF of p2 for no fluctuation (Ref. C.2); and
2 .
! L 2 v ., -4
Flpi|Np) = A flp, INy) at . _
AN ]
i Define .
4
’,' £(0%|a,8,0,0,7) = pa“(l-oz)BZPi(B.O;Y;ozoi) (C.26a) -
& and y
o 2
2 t , o
e F(p,|a,8,0,4,Y) = £(0°]a,8,0,8,v) do° (C.26b) N
“ TARELEANL &) 0,9,0,Y . .
T o "\
W :'\
" ﬁ(p%lﬂ-r) has the same form as ;(DZINT), Eq. (C.20), where the function \
; f(DZlG,B,Q,O,Y) is replaced by F(D%‘G,B,Q,O »Y) . i
- .."T
N Substitute Eq. (C.26a) into Eq. (C.26b) and expand the hypergeometric
) function. Then, 2 g
- 2L Py
b . (8), (4,0
: F(DilmB.G.O.Y) z E —-(%T—::!—T / 02(("""')(1-02)B dpz (c.27)
L
- 2=0
[ (o]
K where
g (?)n = I‘I',(‘;:r)l
- is Pochammer's symbol. From reference (C.3),
o
¥ y n-1 K
a2 1V ax = AR=Lom SSO=Y) gy (C.28)
(men-11 L4kl
-~ [+ -
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Substitute Eq. (C.28) into Eq. (C.22). Then,

B 2.k
(8), (9) (1-p)
~ 2 _ z(m)z L% 224 (O+k+f) !
F(pla,6,8,67) = ° gt ¢ PePp) T Tobedan
k=0
2(u+1) B ®
Sa Sl Ll dtl JEEA
% k=0 to ok
2(as1) B
. :E:}k+1) (1-02)K_F_(8,0,0ek+1;Y,04842;P 02) (c.29)
5 By, a' 'yl 372 *h T .
k=0
Therefore,
(2 2
F(pg|N,) = PRF(p |o Np=2,N N, 1) + PRZF(ptIO,NT-Z,NT,NT+1 ,1)

+ PR F(pt|0 Np=2,Np,Np#2,1) + PR F(ptlo Np=2,Npe 13 Nye1,1)

+PR5F(D$|0,NT-1,NT+1,NT+1,1) + PR6F(D§|O,NT-1,NT+1,NT+2,1)

* PR7F(pi|0,NT,NT+2,NT+2,1) + PRSF(p§I1,NT-z,NT+1,uT+1,1)

2
+ PR9F(pt|1,NT-2,NT+1,NT+1,2)

2
+ PR10F(pt|1,NT-2,NT+2,Ni+2,2)

2
- PR11F(pt|1.NT-Z,NT+2,NT+2,2)

+ PR F(PZ|2,H-2, N 42,42, 3) (C.30)

where the PR's are defined in Eqs. (C.21) = (C.22). It is easily shown that
#(1|g) = 0. Therefore, G(1|Ny) = F(1[Ng) = 1, which makes G(p2|Ng) a CDF.
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Appendix D

li COEFFICIENT EVALUATION FOR THE CDF OF THE SAMPLE MSCC UNDER
RAPID FLUCTUATION CONDITIONS

N . -
- The expression for the Edgeworth series correction factor, F(ptz(NT), to -
I' the cumulative probability function (CDF) of the sample MSCC contained seven ;
N constants (CN's) which depend on the statistical properties of the fluctuation 5:
- model, Eqs. (C.5) and (C.22) of Appendix C. These constants will be evaluated ?f
%: for the statistical fluctuation model presented in Chapter 2. The important -i}
constants are: i%
< o
¢, = 2(m(2,0) - m,(1,00%) (D.1a) =
> 2 -
c, = 2(my(2,0) - m,(1,0%) (D.1b) .ﬂ
b2 c, = 2(m(0,2)m (0,2) - m_(0,1)%m_(0,1)2) (D.1e)
3 1 ? mz ] 1 ? mz ’ .
o ¢, = 2(=,(1,1m,(0,1) - m (1,0)m,(0,1)m,(0,1)) (D.1d)
-
1 C5 = 2(m (0,1m,(1,1) - m,(1,0)m, (0,1)m,(0,1)) (D.1e)
: C, = m0(0,2)m,(0,1) - m (0,1)%m_(0,1)2 (D.1£)
6 1Sl 1l Rt :
o where
N
! nk(c,B) = E{r:ska’z} (D.2)
and
-
l‘k s sk + “k . (Do3)

.
3
or |

[
L

Assume that Sy is Gamma distributed with mean Sk and MS, degrees of free-

dom and N 1s also Gamma distributed with mean ﬁk and MN, degrees of freedom
as discussed in Chapter 2. Then, from Eq. (A.2) of Appendix A,

[ty
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- 3
T\- :
4 m (1,0) = §k + ik (D.4a) :
m (2,0) = E{si + 25N + nz}
. -2
N — _ 2 Sk Nk
. = (5, +N)" + 5 * o (D.Ub)
M T M
I( + 1/2)
m (0,1) = e 2 5 /2 (D.4c)
. MS_ T(Ms,)
- m (0,2) = 5
R m (1,1) = E{(S N )s"2
- T( + 1/2) + 172
* = i 73 S“ Hsk sk+ n (D.4d)
MS, " “T(Ms,)
-
. Substitute Eq. (D.4) into Eq. (D.1):
)" - -
52 ¥,°
C, = 20—+ — (D.5a)
1 1 MS1 MN1
‘4
52 W2
C = 2 —— § —— (D-Sb)
) 2 Ms, N,
- I(MS, + 1/2) T(MS, + 1/2)
o C3 = 28182 - 172 (D.Sc)
s ms,) /2 rws,) roms,)
I(MS, + 1/2) T(MS, + 1/2) ., _
G = —————2 §3/25)/2 (D.5d)
:'.: HSI(HS1M82) I'(HS1) I'(!Ba)
T(MS, + 1/2) T(MS, + 1/2) _.,. _
i ¢ = : 172 2 31/2 53_/2 (D.5e)
N MS, (MS MS,) T(Ms,) T(Ms,)
. T(us, + 1/2) Tms, + 1/2) | 2
(MS_MS,) r(HS1) I‘(Msz)
N
3
F 73
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According to Eqs. (2.17) and (2.18) of Chapter 2,

‘.
] SNR, SNR
2 1 SNE, 2
pp = BIAS (SNR, + 1) (SNR, + 1) Ps (D.6a)
where
T(Ms, + 1/2) T(MS, + 1/2) 2
BIAS = 77T - (D.6b)
(s M) /2 Tws ) Tams)
is the bias factor, and
SR, = §kxﬁk (D.6c)

Substitute Eqs. (D.5) and (D.6) into Eq. (C.20) of Appendix C. The CN's

become
sunf - MS /M, sung + MS,/MN,
CN1 = > + 2 (D.?&)
MS,(SNR, + 1)2 . MS,(SNR, + 1)
ol
- T 1/2 -
CN, = zrg (1 - BIAS''®) (D.7Db) 2
1
) SNR, SNR, ;
CN; = 200 FS(SNR. + 1) © MS.(SER. + 1) (D.7e) Y
1(SNR, 2(SNR,
o2
CNu = BIAS (1 - BIAS) (D.7d) ]
2 |
CN; = CNy - 2CN, - 2CN, (D.7e) y
: . CN ]
_ _ 3 2 )
CNg = 20N, - —2 + CN,P] (D.7£) 1
CN, = CN. + 2CN. - CN. + CN, (1 + P2) . (D.7g) 4
7 1 2 3 y T . 3
.-
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